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Abstract

The goal was to determine the locomotor and consummatory effects of sugar in amphetamine-sensitized rats. Following a 30-min

locomotor activity baseline using a photocell cage, male rats were administered either 3.0 mg/kg amphetamine or saline i.p. daily for 6 days.

On the final day of injections, locomotor activity was measured again to affirm amphetamine sensitization. Experiment 1: Seven days later,

half of each group was offered 10% sucrose or water for 1 min in the home cages, followed by a 30-min locomotor activity test to determine

whether or not the animals had become hyperactive in response to sugar. Results showed that amphetamine-sensitized animals were

hyperactive following a taste of sugar, but not water. Experiment 2: All subjects were then given access to 10% sucrose for 1 h daily for five

consecutive days. Results showed that the amphetamine-sensitized group consumed more sucrose across the 5-day measurement period.

These results suggest that sugar may be acting on the same system as amphetamine to trigger hyperactivity, and that alterations in this system

caused by repeated doses of amphetamine can instigate an appetite for sugar that persists for at least a week.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Behavioral sensitization is defined as an increase in the

locomotor-stimulating effect of a drug after repeated admin-

istration (Robinson and Becker, 1986; Stewart and Badiani,

1993). This phenomenon has been observed with several

drugs of abuse, including cocaine, morphine and alcohol

(Shuster et al., 1977; Hinson and Poulos, 1981; Cornish and

Kalivas, 2001; Babbini and Davis, 1972; Brady and Holtz-

man, 1981; Powell and Holtzman, 2001; Hoshaw and

Lewis, 2001; Lessov et al., 2001a; Fish et al., 2002).

Drug-induced sensitization has also been associated with

increased drug self-administration (Lessov et al., 2001b;

White and Holtzman, 2001) and implicated as a factor

contributing to drug addiction (Robinson and Berridge,

1993).

Animals sensitized to a particular drug will often show

increased locomotor activity in response to a different drug

of the same class. This phenomenon, known as cross-

sensitization, has been demonstrated across several drugs

of abuse, including amphetamine with cocaine or phency-

clidine (PCP) (Pierce and Kalivas, 1995; Kalivas and

Weber, 1988; Schenk et al., 1991; Greenberg and Segal,

1985), cocaine with alcohol (Itzhak et al., 1999; Itzhak and

Martin, 1999) or MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine) and heroin with cannabis (Pontieri et al., 2001).

In addition to hyperactivity, numerous clinical and ani-

mal studies have found that sensitization to one drug will

lead to subsequent increased intake of another (Henningfiled

et al., 1990; Liguori et al., 1997; Hubbell et al., 1993;

Nichols et al., 1991; Volpicelli et al., 1991). In addition,

sensitization to morphine injected into the nucleus accum-

bens (NAc) has been implicated in increasing the consump-

tion of sweet, palatable foods (Bakshi and Kelley, 1994).

Ingestion of palatable foods releases opioids (Tanda and

Di Chiara, 1998) and dopamine (DA) in the limbic system

(Hernandez and Hoebel, 1988a,b; Radhakishun et al., 1988;

Salamone et al., 1994). It is believed that enhanced mes-

olimbic dopaminergic neurotransmission plays a key role in

the behavioral effects of cross-sensitization. Sugar has been

shown to have behavioral and neural effects similar in

some cases to drugs of abuse. Colantuoni et al. (2001)
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found that rats maintained on a diet of intermittent access to

sugar and chow developed a pattern of excessive intake

with bingeng during the first hour of daily access. Increased

D1 and mu-opioid binding and decreased D2 receptor

binding in the NAc were observed. In addition, somatic,

behavioral and neurochemical evidence of withdrawal from

sugar was seen in these animals (Colantuoni et al., 2002).

Since the neurochemical and behavioral adaptations

observed with sugar dependence are similar to those that

occur during psychostimulant sensitization, it was hypothe-

sized that amphetamine and sugar would cross-sensitize

with each other. If so, this would lend further support to the

theory that palatable foods such as sugar can have addictive

properties.

2. Method

2.1. Experiment 1: Amphetamine–sugar cross-sensitization

2.1.1. Animals and equipment

Forty male Sprague–Dawley rats weighing 225–250 g

were obtained from Taconic Farms (Germantown, NY) and

housed individually on a reversed 12-h-light/12-h-dark

cycle. Food and water were available ad libitum throughout

the experiment. Locomotor activity was measured in a

43.2� 43.2-cm open-field activity chamber (MED Associ-

ates, Georgia, VT) with 30.5 cm high acrylic sidewalls and

16 infrared photocells on each of the three axes. All

procedures were approved by the Institutional Animal Care

and Use Committee.

2.1.2. Locomotor activity measures

All locomotor activity tests were conducted during the

fourth hour of the dark period. Baseline locomotor activity

measurement was obtained on Day 1. Animals were

allowed to habituate in the activity chamber for 15 min

and then were administered an i.p. injection of saline.

Fifteen minutes later, activity counts were measured for

30 min. Counts were quantified as the number of infrared

beam breaks. Beginning on Day 2, subjects (n = 20/group)

were administered saline or 3.0 mg/kg i.p. amphetamine

sulfate in saline (Supreme Pharmaceutical) for six consec-

utive days to induce sensitization according to the tech-

nique of Wyvell and Berridge (2001). On the last day of

injections (Day 7), animals were placed in the activity cage

immediately after the injection, and 15 min later, locomotor

activity was measured for 30 min. Seven days later, half of

each group was offered 1-min access to 10% sucrose, and

the other half received water, in their home cages. The

experimenter would watch each subject and start and stop a

timer while each animal was drinking. Once the animal

began to drink, another timer would begin for 3 min, so

that each animal could drink for a total of 1 min, but could

take no longer than 3 min to do so. The amount of each

animal’s intake of sucrose was recorded. Subjects were

immediately placed in the locomotor activity chamber, and

15 min later, activity counts were measured for 30 min.

2.2. Experiment 2: Subsequent consumption of sucrose

After the final activity measurement, all subjects (amphe-

tamine-sensitized and saline-treated, n = 20/group) were

returned to their home cages and were presented with free

access to 10% sucrose in a bottle for 1 h during the sixth

hour of the dark period for each of the next 5 days.

Sucrose intake was recorded at the end of each 1-h access

period.

2.3. Data analysis

2.3.1. Experiment 1

Locomotor activity counts were normalized to baseline

(Day 1) for each rat. Locomotor activity data were analyzed

with a two-way ANOVA (treatment� taste) and data for

sugar and water taste consumption were analyzed with

unpaired t tests.

2.3.2. Experiment 2

Sucrose intake data were analyzed using a two-way

ANOVA (treatment� day). Post hoc Tukey HSD tests were

used in both experiments when justified.

3. Results

3.1. Experiment 1: Amphetamine cross-sensitization shown

as sugar-induced hyperactivity

After 6 days of amphetamine injections, Day 7 loco-

motor activity results found all amphetamine-sensitized

animals were hyperactive compared to both baseline (Day

1) as well as saline-treated animals [F(1,76) = 14.34,

P < .01]. There was no differences between the amphet-

amine-sensitized animals that would later receive a taste of

Fig. 1. Comparison of the taste of sucrose vs. the taste of water on

locomotor activity 7 days after treatment with amphetamine or saline.

Amphetamine-sensitized rats were more active after a taste of sugar than

water ( P < .01). Saline-treated rats did not show this effect.
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water and the ones that would later taste sugar (P=.58).

Additionally, there was also no difference between saline-

treated animals that would later receive a taste of sugar or

water (P=.57) or their activity levels compared to baseline

(P=.84).

All rats in the experiment tasted the sugar or water,

whichever was available. There was no difference between

the groups that received amphetamine treatment and those

that received saline treatment in the amount of sugar or

water consumed during the 1 min of drinking during the 3-

min access period [means: 2.6 ± 0.3 and 2.4 ± 0.5 ml of

sucrose, respectively (P=.73); 1.3 ± 0.4 and 1.0 ± 0.3 ml of

water, respectively (P=.55)].

The main effect was a significant interaction between

drug treatment (amphetamine or saline) and fluid intake

(sugar or water) during the final activity measurement 7

days after treatment had stopped [F(1,36) = 5.5, P < .03].

Amphetamine-sensitized rats showed an increased loco-

motor response to the taste of sugar as opposed to water

(P < .01) (Fig. 1). The effect was also significant compared

to saline-treated animals that received sugar (P < .05).

Saline-treated animals showed a small increase in locomotor

activity when challenged with sugar, but this was not

significantly different than the effect of tasting water

(P=.13).

3.2. Experiment 2: Amphetamine-sensitized animals con-

sume more sugar than saline-treated animals

Animals treated with amphetamine a week earlier con-

sumed more sugar in 1-h tests during the 5-day test period

than animals previously treated with saline [F(1,190) = 18,

P < .01] (Fig. 2). Both groups progressively increased their

intake of sucrose over the 5-day period. Amphetamine-

sensitized rats consumed more sucrose than saline-treated

rats on the first, third and last day of testing (Day 1: P < .05;

Day 3: P < .05; Day 5: P < .05).

4. Discussion

Amphetamine-sensitized rats were more active than con-

trols in response to drinking sugar for 1 min. Amphetamine-

sensitized rats given access to a taste of water did not show

this effect (Fig. 1). Thus, the results of the first experiment

demonstrate that a taste of sugar can cause an increase in the

locomotor activity of amphetamine-sensitized rats, indic-

ative of cross-sensitization. These findings are similar to

those observed when amphetamine cross-sensitizes with

drugs of abuse (Pierce and Kalivas, 1995; Kalivas and

Weber, 1988; Schenk et al., 1991; Greenberg and Segal,

1985).

Repeated treatment with morphine, cocaine, amphet-

amine or ethanol has been shown to induce long-lasting

changes in NAc dopaminergic functions (Robinson et al.,

1988; Kalivas and Duffy, 1993; Spanagel et al., 1993;

Kalivas and Stewart, 1991). With stimulants, the terminal

regions of the mesolimbic DA system adapt by increasing

D1 receptor binding, decreasing basal DA transmission and

enhancing DA release in response to the drugs (Imperato et

al., 1996; Vanderschuren and Kalivas, 2000). With opiates,

there is a decrease in D2 receptor sensitivity and increasing

D1 and mu-opioid receptor binding that may enhance the

effects of an opiate drug (Unterwald, 2001; Unterwald et al.,

2001). Sensitization of DA transmission in the NAc may be

specific to the core region in both stimulant and opiate-

induced sensitization (Cadoni and Di Chiara, 1999; Cadoni

et al., 2000).

Repeated exposure to DA agonist drugs (amphetamine

sensitization) produces a state of intermittent DA activation

followed by periods of low basal DA transmission (Weiss et

al., 1997; Imperato et al., 1996; Amano et al., 2002).

Intermittent activation of the mesolimbic DA system, in

the context of low DA transmission, may facilitate drug

sensitization (Koob and Le Moal, 2001). Supersensitive D1

receptors in the NAc are thought to be involved in the long-

term persistence of the sensitized response (Henry and

White, 1991, 1995). In the present study, a taste of sugar

may be releasing DA in a manner that stimulates super-

sensitive D1 receptors in amphetamine-sensitized animals,

resulting in an increased locomotor response. It is interest-

ing that taste-induced hyperactivity was observed a week

after the last injection of amphetamine.

The results of the second experiment indicate that

amphetamine-sensitized rats have an appetite for sugar

when they taste it (Fig. 2). This finding is analogous to

previous research which found that sensitization to one drug

could increase voluntary intake of another drug of the same

class (Lessov et al., 2001b; White and Holtzman, 2001;

Henningfiled et al., 1990; Liguori et al., 1997; Hubbell et

al., 1993; Nichols et al., 1991; Volpicelli et al., 1991). Other

studies have found this effect with non-drug substances.

Behavioral cross-sensitization between cocaine and stress

has been demonstrated (Prasad et al., 1998; Covington and

Miczek, 2001; Antelman and Caggiula, 1977). In addition,

Fig. 2. Sucrose intake each day for 5 days during 1-h access periods

subsequent to treatment with amphetamine or saline. Amphetamine-

sensitized rats drank significantly more sucrose than saline-treated rats

over the 5-day test period, specifically on Days 1, 3 and 5 ( P < .01).
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increases in food intake (Bakshi and Kelley, 1994) and

sexual behaviors (Fiorino and Phillips, 1999a,b; Nocjar and

Panksepp, 2002) have been observed in animals with a

history of drug sensitization. The present study found that

amphetamine sensitization increased subsequent consump-

tion of a palatable food, namely sugar, a week later.

The mechanism for this increase in appetite is probably

the same as described above for cross-sensitization of sugar-

induced locomotion. The taste of sugar may release DA that

acts in a system with increased D1 receptor binding in the

mesolimbic DA system, decreased basal DA transmission

and enhanced DA release (Imperato et al., 1996; Vander-

schuren and Kalivas, 2000), thus producing an enhanced

DA-mediated appetite. A similar process could be occurring

in an opiate system.

The present results suggest that the neural changes

caused by intermittent amphetamine occur in a system that

subserves an animal’s reaction to sugar, and perhaps, any

very palatable food. To the extent that sugar and amphet-

amine act alike, one might surmise that intermittent sugar

could lead to dependency. Recent work in this laboratory

has found that intermittent sugar intake can up-regulate D1

and mu-opioid receptors in the NAc core and shell regions

much like amphetamine and cocaine (Colantuoni et al.,

2001). Such animals show behavioral and neurochemical

signs of opiate withdrawal when given naloxone (Colan-

tuoni et al., 2002). It is suggested that prolonged intermittent

exposure to sugar (e.g., 12 h each day for 30 days) leads to

these neural changes such that bursts of sugar ingestion

produce intense activation in the same systems as those

which cause amphetamine sensitization and amphetamine

dependency.
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